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§  As you already know that I have worked in ANL before, and now I am still
 collaborating with researchers in ANL/MCS. So I am qualified in this joint
 laboratory; 

§  This talk is about scientific computing and numerical methods which is a
 little bit different from the research interests of most participants in this
 workshop, the simulations presented in this talk needs lots of optimizations
 in computer science and hope to collaborate with experts attending this
 workshop; 

§  The talk will include some introduction on the physics of the simulations,
 and I hope they are interesting to you. 

Few points before the talk 
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Overview 

§  Introduce some large scale simulations that have been done and numerical 
methods for them, due to the time limit this talk only focus in fluid simulations. 

§  Extreme computing provides more capability for scientific computing than 
before. Now it is meaningful to revise and improve the numerical methods and 
parallel models used before so that extreme computing can be efficiently used 
for some typical computing challenges such as turbulence, plasma, and 
combustion, etc.  

§  High-order numerical methods have been used in these simulations. 
§  This talk will discuss following questions:  

§  Why these simulations need extreme computing? 
§  What are the benefits of extreme computing for these simulations?  
§  Which numerical methods are scalable for extreme computing and how to improve 

them? 
§  What are the benefits and difficulties of using high-order numerical methods in 

extreme computing? 
§  These simulations need more improvements on the side of computer science 

such as parallel models, parallel I/O, etc.  
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Content 

§  Fluid Mechanics 
v  Incompressible flow, compressible flow, inviscid flow, viscous flow, 

multiphase flow, laminar flow, turbulent flow, …… 
v  Finite volume, Finite Difference, Finite Element, Spectral Fourier, Spectral 

Element, Lattice, Mesh free, hp-Finite Element, ……  
v  Direct Numerical Simulation of turbulent flow 
v  Channel turbulence DNS 
v  Pipe turbulence DNS 
v  DNS of flow pass cylinder with one homogeneous direction 
v  DNS of flow in arbitrary 3D domain 
 

§  Parallel Poisson Solver 
v  Structured and unstructured grids 
v  Cartesian and cylindrical coordinate systems 
v  Continuous and Discontinuous Galerkin methods 
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GPU BG/P 

Low-order 
method 

High-order 
method 

CPU 

Software package build 
with low-order methods 
for extreme computing 

u  Supercomputers usually are built with 
CPUs 

u  GPU can achieve faster speed than CPU 
in some situations 

u  GPU can not replace CPU completely 
u  It needs more efforts to use GPU 

u  Extreme computing software   
usually use low-order methods 

u  HOMs can achieve high accuracy 
than LOMs in some situations 

u  HOMs can not replace LOMs 
completely 

u  It needs more efforts to use HOMs 

High-order numerical methods 

Developing extreme 
software with soft 

“GPU”-HOMs 
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q   Most materials in nature are in the 
state of fluids 
q    Most fluids are in turbulent state 
q    Three ways to investigate turbulence: 
(Experiment, theory and simulation) 

Kolmogorov's Theory of 1941 

Ø   Turbulent flow is composed by "eddies" of different sizes.  
Ø   The large eddies are unstable and eventually break up into smaller eddies, and the 
kinetic energy of the initial large eddy is divided into the smaller eddies that generated 
from it. 
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Why Turbulence DNS needs 
extreme computing? 

Reynolds Average Navier-Stokes 
(RANS) 

Large Eddy Simulation (LES) 

Direct Numerical Simulation (DNS) 
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Homogeneous isotropic 
turbulence 

ϕ(x, y, z, t) =
p=−P/2

P/2−1

∑
n=−N /2

N /2−1

∑
m=−M /2

M /2−1

∑

ϕ(m, p,n, t)e−iαmxe−iβnye−iγ pz

ϕ(0, y, z, t) =ϕ(2π, y, z, t)
ϕ(x, 0, z, t) =ϕ(x, 2π, z, t)
ϕ(x, y, 0, t) =ϕ(x, y, 2π, t)

16.4-Tflops Direct Numerical 
Simulation of turbulence by a 
Fourier  Spectral Method on 

the Earth Simulator 
 

Mitsuo Yokokawa, etc. 

ReD < 2300

ReD > 4000

2300 < ReD < 4000

Laminar flow: 

Transition flow: 

Turbulent flow: 

For channel flow: 

Typical Reynolds number ~107 

Reλ ∝Re
1/2, Re =UL

ν

40963

Reτ =180⇔ReD = 4300

Reτ =10
4 ⇔ReD = 5×10

5

In 2005: 

Reτ = 2320⇔ReD = 51500

Supercomputer now in 2012  
can simulate 

Borrowed 
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o 1D hp-Finite Elements 

•    Kim, Moin, Moser 
1987, JFM 

Multi Elements in y 
Faster Speed 

Stability Increased 

hp-Finite Element 
 Method in 1D  
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Navier-Stokes Equation 

Turbulent Channel Flow 
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Time Splitting Scheme 

o  The first DNS of homogeneous 

turbulence by Steven Orszag (1973) 

o  The first channel turbulence DNS was 

done by Kim, Moin and Moser in 1987.  

o  3rd Order Splitting Scheme 

o  De-aliasing in stream-wise and span-

wise directions 

o  Static Condensation Technique 

o  FFTW, BLAS, LAPACK Libraries 

o  MPI parallelization 

o  Iterative and Direct Solver (1D) 
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1. Nonlinear step: 

2. Pressure step: 

3. Viscous step: 

Numerical Method 
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•   Model A is hard to use one million cores, Model B can use but not easily, 
only model C can easily use. 
 
•   Fourier expansion and Chebyshev polynomial are global functions, which 
are not suitable for using large number of processors. 

•   We changed the method to Fourier-Fourier-1D hp Finite Element Method, 
which can easily fits elements to processors in y direction. This means that we 
have used method with local expansion to substitute the method with global 
expansion method. 

Parallel Models 

A B C 

61010001000 =× 610100100100 =××32048Grid =
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De-aliasing in x and z directions 
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De-aliasing for non-linear step 

Interpolation 

Extrapolation 

Model A 

Shift data 

Fourier plane (m, n) 

CPU I 

CPU 16 

CPU 10 

Redistribute data  
to planes on each processor 

(Model B1) 

2D FFT 

Limitation 

. 

. 

. 

. 

. 

. 

(Model A) 
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Communication 
 Group z 

Communication Group x 

De-aliasing for Non-linear Step  

x 

z 

o 

De-aliasing separately  
in x and z directions 

(Model B2) 

0 

CPU 0 

CPU 4 

CPU 8 

CPU 12 

4 
8 

12 

Redistribute data 
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Complex FFT: from 2N real 
numbers to (N+1) complex 

numbers 
Sending data from all processors to 

their 6 neighbor processors 

(Model B3) 

Fig. 1D Helmholtz matrix 

De-aliasing for Non-linear Step  
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Benchmarks for Model B and C 

Mesh Procs. # T(NL) T(PR) T(VIS) T(tot) T(NL)/T(tot) 
512 20.56 6.26 8.15 34.97 58.8% 

1024 18.68 6.62 8.92 35.22 55.9% 
2048 18.19 6.18 8.38 32.75 55.5% 

512513512 ××

10245131024 ××

768513768 ××

Mesh Procs. # T(NL) T(PR) T(VIS) T(tot) T(NL)/T(tot) 
512 40.61 11.53 2.64 54.78 74.1% 

1024 40.64 12.51 3.06 56.21 72.3% 
2048 52.89 13.26 2.65 68.8 76.9% 

512513512 ××

768513768 ××

10245131024 ××

Table. Time of nonlinear step for model B2 with same number of points in the y direction 

Table. Time of nonlinear step for model C with same number of points in the y direction 

Re Domain Mesh Data 
180 4300 64M 

600 18000 1.5G 

1000 27500 8.64G 

2π ×2×2π
2π ×2×π
6π ×2×1.5π

128×130×128

384×361×384

768×521× 768

Table. Simulation parameters 
for DNS at different Reynolds 

number 

Reτ
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Simulation Results 

Country Computer Cores Year Rmax Rpeak 
United States BlueGene/L 65536 2005 136.80 183.50 
RIKEN, Japan K computer 705024 2011 10510.00 11280.38 

10510/136.8 
〜～76 

Comparison of 
model B and C 
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Benchmark Results 
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•  “Benchmarks on Tera-scalable Models for DNS of Channel Turbulent Flow”,  
Parallel Computing. Vol. 33/12, 780-794, 2007.  

1000Re =τNear Wall  
Vortex Structure 
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2005 

Simulation Results 
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Ø Micro-bubbles:  
 Force Coupling Method (FCM) 
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•  "Numerical Simulation of Turbulent Drag 
Reduction Using Micro-Bubbles", Journal 
of Fluid Mechanics, 468:271-281, 2002. 

Force Monopole 

Force Dipole 

Ø  Constant Forcing 

Ø  Slip boundary condition 

•   “Turbulent Drag Reduction by Constant Near-wall Forcing”, Journal of Fluid 
Mechanics. 582, 79-101, 2007.  
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q Numerical discretization 
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A ⋅ ϕ = f̂ , A = K +M + N

Kpq = r
0

1

∫
∂ϕ p(y)
∂r

∂ϕq (y)
∂r

dr

Mpq =m
2 1

r0

1

∫ ϕ p(y)ϕq (y)dr

Npq = n
2 r
0

1

∫ ϕ p(y)ϕq (y)dr

Gauss-Lobatto-Radau 

]0.1,0.1(−

Numerical and Parallel Methods 
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φ(x, 0, z)<∞
∂φ
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= 0, φ(x,1, z) = 0

φ(0, y, z) = φ(2π, y, z)
φ(x, y, 0) = φ(x, y, 2π )
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Cylindrical Coordinate System 
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Flow Past Cylinder 

Flow past cyl inder has many
 applications in industry, such as oil
 pipe in ocean and cable, chimney in
 the wind. 
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Advantages:  
                  - Easy implementation, 
                  - High parallel efficiency 
Disadvantages: 
                  - Maximum CPU is limited 
                    Since each processor must 
                    have 2 planes! 

Du = f      Lu = f 
within every elemental domain 
 
  
Lii are decoupled and so easy to invert and 

construct the Schur complement: 
      S ub = [Lbb - Lbi  L-1

ii Lib ] ub = fb - Lbi  L -1ii fi  

Schur complement is constructed at an elemental 
level then use PCG 

Static Condensation 
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MPI/MPI Two-Level Parallelism 

Mesh  
partition 

New Model Parallel Iterative Solver(PCG) 
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Parallel Poisson solver  
on structured grid 
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We seek the discontinuous approximation      to the exact solution     in       such that 

.0     ;)(),( Ω on  φPFa h
N

hhhh k
∂=∈∀= Ωϕϕϕφ

∑∫

∑∫ ∫∫

Ω

Ω ΓΓ

=

⋅+∇⋅+∇⋅−∇⋅∇=

k

k
hh

k

k

xdfF

dsdsxda





ϕϕ

ϕφµϕφφϕϕφϕφ

)(

]][[]][[)]][[]]([[),(

2/)(}{
,]][[

−+

−−++

+=

+=

φφφ

φφφ nn 

hφ φ N
k

PΩ

Let     and     be the corresponding normal vectors on triangle edges. Let     be a smooth 
function inside each element k and let us denote by      the trace of      on edges from the 
interior of     . 

+n −n φ
±φ φ

±k ,on       0     ,in     ΩuΩfu ∂==Δ−

,on       0     ,in         , ΩuΩfu ∂==⋅∇−∇= σσ

∫ ∑ ∫∫

∫ ∑ ∫∫

∂⊂

∂⊂

∈∀+=∇⋅

∈∀⋅+⋅∇−=⋅

K
Ke
e K

Ke

K h

K
Ke
e K

Ke
uhK h

P(K)vvdsnhfvdxvdx

Σ(K)τdsnhdxudx

          

          

,

,

σσ

τττσ

}ΤK   Σ(K) v|     ) )((L{vΣ

}ΤK   P(K)     v|        )(L{vV

h
22

h

h
2

h

∈∀∈∈=

∈∀∈∈=

Ω
Ω

,Ksuch that   and u Find hhh Τ∈∀Σ∈∈ hhV σ

Equivalent 

Internal Penalty Method 



Institute of Software,Chinese Academy of Sciences 

Parallel Poisson solver on
 unstructured mesh 
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Flow Pass Cylinder  
at Re=10,000 

6272 Elements, P=5, 64 Fourier planes 

Simulation Results 

CD =
Drag

ρDU 2 / 2
CL =

Lift
ρDU 2 / 2

Drag coefficient Lift coefficient 
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Fourier-Fourier-Fourier 
Homogenous  
Turbulence 

in 3D 

Fast algorithm in 3D 
Global-Global-Global  

Not scalable 

Fourier-Fourier-Chebyshev  
Polynomial Homogenous  

Turbulence 
in 2D, Channel 

Fast algorithm in 2D 
Global-Global-Global  

Not scalable 

Fourier-Fourier-1D  
hp-Finite Element 

Fast algorithm in 2D 
Global-Global-Local  

1D scalable 

hp-Finite Element on 
Tetrahedron(Hexahedron) 

General  
Turbulence 

in 3D 

No fast algorithm 
Local-Local-Local  

3D scalable 

Speed and Scalability 

Fourier-2D hp Finite Element  
on Triangle(Quadrilateral) 

Homogenous  
Turbulence 

in 1D 

Fast algorithm in 1D 
Global-Local-Local  

2D scalable 
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Spherical domain 
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development 
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Ø    Continuous Galerkin Method 
Ø    Nodal Base 
Ø    3D Tetrahedron 
Ø    Static Condensation 
Ø    Conjugate Gradient Method 
Ø    Parallel implementation through

 MPI 
Ø    Domain partition by ParMetis  
        or manually 
Ø    Mesh generated by CUBIT 
Ø    3~10 Polynomial orders 
Ø    Dirichlet Boundary Condition 

Parallel Poisson solver  
on unstructured grid 
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Conclusion 

§  Extreme Computing is necessary for direct numerical simulation of 
turbulence, because the cost is proportional to Re3; 

§  High order numerical methods are necessary for turbulence DNS to reduce 
the size of the mesh; 

§  Although FFT can achieve faster speed, the scalability is not good as the 
Fourier expansions are global functions; 

§  Numerical methods with local expansions usually have better scalability 
than those with global expansions; 

§  Benefits of extreme computing have been shown for DNS of channel 
turbulence; 

§  Domain decomposition method has been used to make use of large number 
of processors; 

§  We are going to add real GPU to accelerate our simulations in the future! 
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Thanks ！ 


